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Abshact. The Korringa relaxation-me process is derived for a heavyfermion system. The 
approach is based on a time-&pendent pembation theory, which avoids the use of the Ward 
idenhty and ignores possible effects due to 4f meearth concentration, employing instead the 
Keldysh formalism. The Yoshimari-Kasai Hamiltonian is used to model an electron spin 
resonance (FSR) experiment. and the spin relaxation rate is derived from Green functions obtained 
within the context of this model. The low-temperature equilibrium properties of the model are 
briefly discussed, and an expression for the enhanced mass is derived indicating the transition 
from the zera-temperature coherent state to the finite-temperature scamring state. The Korringa 
rate process is expressed as an integral equation, and the contribution due to the correlation of 
fluctuating impurity spins is identified as a resonance near the Fermi energy within the integrand 
of this equation. The results we compared to experimental ESR work on UBel,, CeCuzSiz 
and CeAI3, and found to have good qualitative agreement. The model connects the exchange 
coupling parameter I to the observation of temperature-dependent non-linear behaviour of the 
spin relaxation rate in heavyfermion systems. 

1. Introduction 

For over a decade heavyfermion compounds have generated a vast number of experimental 
and theoretical investigations. Compounds such as UBel3, UPt3, &Fe and CeCuZSi2 
are representative of this class of material, which exhibit enormous values of magnetic 
susceptibility and coefficient y of the linear term in the electronic specific heat. CeCuzSiz 
has been classified as a Kondo lattice, exhibiting, below the Kondo temperature &, a 
logarithmically increasing electrical resistance with decreasing temperature similar to dilute 
Kondo alloys. Also, the rareearth ion of the intermediate-valence materials fluctuates 
between two charge states such as Ce4+ and Ce3+ (f', f'), other charge states being 
considered inaccessible in energy. Gandra etal (1985) measured the electron spin resonance 
(ESR) of UBel3 doped with local moments of various rare-earth impurities, but were unable 
to detect any significant anomalies in the thermal broadening of the ESK lines, which was 
surprising because of the expectation of an enhanced relaxation due to the unusual heavy- 
fermion ground state. Subsequently, Coldea et a! (1987) discovered enhanced broadening 
of ESK lines of the Gddoped Kondo-system isoshucture YI-,CexA12. A short time later, 
Schlott et al (1988) discovered large temperature-dependent anomalies in the Gd ESR 
relaxation rates around the Kondo temperature of Gd-doped CeCuzSiz and CeAl3, and 
attributed this enhanced spin relaxation to Ce 4f spin fluctuations mediated by Ruderman- 
Kittel-Kasuya-Yosida (RKKY) coupling. 
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In an attempt to explain the strikingly normal behaviour in the studies of Gandra et 
al (1985). Simanek and Sasahara (1987) argue that the enhancement of the Korringa rate 
and its anomalous temperature dependence of heavy-fermion compounds is absent in ESR 
studies because the Korringa rate is unaffected by the heavy-fermion renormalizations. 
This proposal was made before the discovery of the non-linear temperature dependence 
of spin relaxation in YI_,CQAI~, CeCuzSil and CeAls, and unfortunately the theoretical 
approach is unable to account for these non-linearities. Simanek and Sasahara use the 
model of Yoshimori and Kasai (1983) to derive the spin relaxation rate from the transverse 
susceptibility by using the Ward identity. They argue that the vertex function associated 
with the local spin fluctuation is given by the sum of all Feynman graphs by inserting 
a free vertex in each bare conduction-electron line in the set of diagrams obtained by 
a perturbation expansion of the fully renormalized conduction-electron propagator. They 
contend that, because the self-energy of the dressed conduction-electron propagator does 
not contain any bare conduction propagator, there can be no vertex correction to the spin 
fluctuation propagator, and therefore the transverse susceptibility is simply given by the 
product of fully renormalized conduction-electron Green functions. 

Implicit in this reasoning, however, is that the use of the Ward identities demands that 
certain conservation laws are preserved by the original Hamiltonian. Early theoretical work 
on dense Kondo systems (Read and Newns 1983) shows that the original Hamiltonian does 
not conserve particle numbers of f eleceons on a given lattice site. This fact may cast 
doubt on the satisfaction of the Ward identities where the Green functions are evaluated 
using the Hamiltonian of Yoshimori and Kasai. Also, in order to calculate Green functions 
in a statistical system by the above approach, one must assume that the system is very 
close to thermodynamic equilibrium. In carrying out this programme, the deviation of the 
system from the Gibbs disnibution must be small. i.e. extemal fields must be small. In a 
typical ESR experiment the external field, aside from the RF field, may be quite large. and 
one cannot assume the existence of an approximate thermodynamic equilibrium. 

Ochi and de Menezes have proposed a model in which the non-linear temperature- 
dependent behaviour of the Korringa relaxation process could be described through a large 
change of the Fermi energy referred to the position of a ‘hybridization gap’ (Ochi and de 
Menezes 1988). This gap appears in the local density of conduction states at the impurity site 
due to the hybridization between the 4f states of neighbouring Ce ions with conduction states 
at the impurity site. In this model there arises a large variation with impurity concentration 
x of the Fermi energy position relative to the ‘hybridization hole’, and the model gives good 
agreement with many experimental ESR linewidth results on Ce-based intermediate-valence 
materials (Ochi and de Menezes 1991). This model, however, reproduces the conventional 
linear Korringa rate in the limit as x goes to zero, in which case ( x  = 0) there are no 
4f rare-earth ions surrounding the impurity The results of Gandra et nl (1985) on D e l 3  
and the results of Gandra ef al (1987) on UPt3 indicate that these materials do not seem to 
provide a ‘hybridization bole’ correction to the ESR relaxation process. These experimental 
results lead to the conclusion that the coupling between the uranium ion and rare-earth ion 
through the s-f electron interaction is very small and that observation of the non-linearities 
in Korringa rate processes in these materials is not a function of rare-earth concentration 
but rather a function of interaction strength. 

In this paper we shall take a completely different approach to the problem of computing 
the spin relaxation rate of heavy-fermjon compounds in an ESR experiment by avoiding the 
use of the Ward identity and ignoring possible effects due to the concentration of rare-earth 
ions. Our approach will be closer to the actual experimental situation by rejecting the 
assumption that the system approaches thermodynamic equilibrium. The problem will be 
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treated by perturbation theory within the context of the Keldysh formalism. Keldysh (1965) 
provided an elegant method of applying Feynman diagrammatic techniques to quantum- 
statistical systems far from equilibrium. We will also adopt thc time-dependent approach 
of Cini (1980) in computing the electron propagators that enter the theory. This time- 
dependent approach provides a simple technique for calculating transport properties such as 
the Koninga relaxation. The physical quantities such as magnetization and susceptibility 
are computed, as Simanek and Sasahara have done, using the model of Yoshimori and 
Kasai. This model is derived from the 'periodic Anderson model', but the assumption is 
made that one can neglect all contributions to the self-energy from perturbation terms that 
include inter-site propagators, and we base our approximation on the ansatz that each f 
state in the lattice is independent, i.e. there are no interatomic f-f correlations. Because 
we assume that the system does not undergo a magnetic transition, the question of f-f site 
correlations is not crucial to the model, but unfortunately the model cannot account for 
possible magnetic frustration effects in heavy fermions as proposed by Coles et al (1987) 
and Kugel and Khomskii (1985). In spite of several shortcomings, however, this model 
provides a representation of the many-body effects of the Coulomb repulsion between f 
electrons and the main features of dense Kondo systems. 

In order to discuss the spin relaxation rate in rigorous quantum-mechanical terms, a 
model, following Yoshimori and Kasai, of a heavy-fermion compound subjected to an 
ESR experiment will be developed in the following section. The time-dependent problem 
of a dense Kondo system with embedded magnetic impurities will be formulated, and the 
magnetic susceptibility will be seen to be an expression in terms of retarded Green functions 
and the retarded s-electron self-energy for the Anderson model of a single magnetic impurity. 
Using a technique developed in a previous paper (Wright 1994). the retarded Keldysh self- 
energy is evaluated in the appendix. A by-product of evaluating this self-energy with the 
Keldysh formalism is that the temperature associated with the divergence of the vertex part 
(Kondo 1964) is pushed to infinity, and since this divergence is implicit in the equilibrium 
technique of Simanek and Sasahara at TK, we see a further advantage of abandoning an 
approach based on free vertex insertions. The rate of the Koninga relaxation process will 
be obtained by using a procedure (Cini 1980) where the system Hamiltonian is assumed to 
evolve in time to a constant final value and the asymptotic form of the time-dependent Green 
function is obtained from its frequency-dependent Fourier transform. The low-temperature 
equilibrium behaviour of the model will be briefly discussed in terms of a Fermi liquid 
and Luttinger's theorem, and an expression for the enhanced mass will be derived that 
demonstrates the transition from the zero-temperature coherent state to the finite-temperature 
non-coherent scattering state. Upon evaluating the ESR relaxation process, we will see how 
non-linearities arise around the Kondo temperature and how the impurity spin probes the 
renormalized conduction-electron density of states. 

2. Formulation 

The model of Yoshimori and Kasai (1983) describes a dense Kondo system using the 
Hamiltonian 

HYK = c ~ k o C t o C k o  f v c ( C & f k o  4- CkofL) 4- CEv(k)fk+,hv + 
k m  k a  km 

x f$f i thTfi+ 
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where cv(k)  is the band energy of valence electrons, U is the on-site Coulomb energy and 
V is the conduction-electron-f-electron mixing parameter. Yoshimori and Kasai make the 
important assumption that the inter-site contributions to the self-energy of the one-particle 
Green function and to the vertex part can be rejected. They also ensure that the model 
describes a metal by giving a small dispersion to the f-band energy, 

€V(k) = Uck U < 1. (2) 

We modify the above Hamiltonian to include a small timedependent perturbation due 
to the RF field of the ESR experiment, 

where y is the magnetogyric ratio, h is the RF magnetic field magnitude, (L,, S-) are 
angular momentum raising and lowering operators that characterize a local moment of spin 
S, is the frequency of the linearly polarized RF field, and Hu is the externally applied 
steady magnetic field. 

Using standard techniques we write for the retarded f-electron Green function and the 
retarded conduction-electron Green function, respectively, 

G;(T, r'; w )  = &(r, r'; w)VGE(r, r'; w )  

+ [[ gF(r, TI;  w)Eif(n, rz; w)GF(rz, r'; w )  drr drz (4) 

(5) 

where the lower-case g represents a bare propagator of a non-interacting particle, the upper- 
case G represents a fully dressed propagator, and E:, is the Keldysh retarded self-energy for 
a single impurity located at the origin of the coordinate system. Because the assumption is 
made that all contributions to the self-energy from perturbation terms that include inter-site 
propagators can be neglected, we follow Yoshimori and Kasai and assert that Xif has the 
same form as that in the Anderson model of a single impurity. We have consigned the 
derivation of the Keldysh retarded self-energy for the Anderson model of a single magnetic 
impurity to the appendiu. Using the following relations 

Gi(r. T'; w) = gi(r, 7'; w )  + &(r, 7'; w)VG:(r,  r'; w )  

gc-yr; o)g:(r ,  r'; 0) = S(T - T) (6) 

we can write the Keldysh equation (Keldysh 1965) for the retarded conduction-electron 
Green function: 

GE(r, T'; 0) = gi(T, 7'; 0) + gE(r, rl; w)Er(r1,  ~ 2 ;  w)Gf(rz,  T'; w )  drl  drz. (IO) 
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Because the Zeeman term in equations (8)  and (9) merely provides a constant 
displacement in energy, we have absorbed it in the definition of w: 

U-+ 0 + Hveman 

Operating on both sides of equation (IO) with gc-' we find: 

( w - V ~ , ) G ~ ( ~ , r ' ; w )  = ~ ( T - T ' ) +  C ' ( T , T ~ ; ~ ) G ~ ( T ~ , T ' ; W ) ~ P ~  (11) I 
where 

V%(Tl - T')  
Er@, 9.1; w) = 

UJ - cr(h2/2m)V:, - Cfr(w) - HW 

and 

Upon taking the Fourier transform of equation (1 I)  with respect to T', we find 

G ~ ( T ,  k; 0) = - (w - a - HRF - v [w - an2 - ~ & ( w )  - HW)-')-' 

where 

(14) 2 2 

(2n)3/2 

a2 = ( i i 2 /2m)k2 .  (15) 

For the sake of simplicity of calculation, the assumption is made that the lattice attains 
enough symmetry so that the following dispersion relation may be written: 

(16) 2 4 k . r  = -k2e-ik.~. VTe 

We are concerned with the calculation of the time-ordered finite-temperature Green 
function. Defined in the standard way it is 

GT(r ,  f ;  T', 2') = -~(T[@(T, t ) @ T ( ~ ' ,  t ')])  (17) 

where T represents the time ordering and @ are Heisenberg electron field operators. The 
angular brackets denote a thermal average taken with an unperturbed density matrix and the 
number density is given by 

In order to connect the time-ordered Green function to the retarded and advanced Green 
functions of the Keldysh formalism, one can show (Cini 1980) that, provided r is any time 
earlier than t and f ' ,  

GT(r ,  f ;  k'. f ' )  = iO(t'- I) E f , G ' ( k ,  f ;  q, r)Ga(q,  r ;  k ,  t') - iO(f - f ' )  
P 
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where fk is the Fermi function and @ ( f  - t') is the Heavyside step function. We follow 
Cini (1980) and consider the initial state of conduction electrons to have an unperturbed 
system Hamiltonian HYK. At time t = 0 we turn on the external fields (Hu >> h) and we 
are thus interested in GT of equation (19) for t > 0 and I' = t + 0 and r is taken to be just 
less than 0. We have H = HYK for t < 0 and H = H ~ K  4- Haunao = H' = constant for 
f > 0. A thermal average over the eigenstates of Hf yields the result 

Gr(k,  t ;  k', t ') = k'; t )  (20) 

where G'.' is a singleparticle electron Green function calculated with the constant final-state 
Hamiltonian. The transverse component of the magnetization at position T ,  and at time f ,  
is 

where Trs indicates a trace over angular momentum states. 

expressed in  terms of the local transverse spin susceptibility by 
Following Simanek and Sasahara (1987) the rate of the Koninga relaxation process is 

1/Tl = (ckBT/ 52) h Xr(Ts n) (22) 

where z2 is the resonance frequency of the experiment and C is a constant that is proportional 
to the square of the exchange coupling parameter J used to evaluate s-f self-energy. We 
calculate the time-dependent transverse susceptibility by differentiating equation (21) and 
assuming that the RF field h is small: 

The frequency-dependent transverse susceptibility is then obtained from equation (23) by 
evaluating its Fourier transform: 

m 

xr(r, a) = 1, ,w, r ) e i ~ ~ ~ .  (24) 

We see that, in order to obtain the Korringa relaxation process, G'*'(T, k:  t )  must 
be determined. If the assumption is made that the system Hamiltonian evolves to a 
constant value after the perturbing field is turned on, then the asymptotic form of the 
Fourier frequency transform of equation (13) may be used to obtain the magnetization of 
equation (21). This will be done in the following section. 

3. The transverse susceptibility 

In this section the magnetization of the spin-impurity system will be evaluated in three steps. 
First, the frequency-dependent retarded conduction-electron Green function (equation (14)) 
will be expanded to first order in the small perturbing RF field. Secondly, the asymptotic form 
of the time-dependent Green function used to calculate the magnetization of equation (21) 
will be obtained from the poles of the frequency-dependent Green function by the method of 
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'Fourier transforms of generalized functions'. The thud step will be to write equation (21) 
in terms of an integral equation of this time-dependent Green function. 

The Green function of equation (14) is expanded to first order in the RF field and found 
to be: 

where 

We see the Fourier frequency transform of equation (Z), but unfortunatt I the 
transform of this function is not known. Since we are interested in the long-time expansion 
of the Green function, we may approximate the Fourier transform by an asymptotic 
expression. This is accomplished by evaluating the Fourier transform in the vicinity of 
the poles of equation (25) (Lighthill 1959). We approximate equation (25) by 

In this form the asymptotic expression for the Fourier transform of equation (26) can be 
easily found. The poles of equation (27). cl and <z, are complex numbers obtained by 
expanding f(o) about a*: 

f&) N f+(& + - a2)[df&O/dwII,.z. (28) 

The poles of equation (27) are thus 

Because a is a small fraction of unity, we can simplify < with the following 
approximation: 

(31) 

Also, the second term in equation (27) is dropped because it provides a correction of O ( d )  
to the first term. 

11.2 =a2 * [R2(az)/h(a 2 )le i i&(uz)-W~l,  
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Figure 1. Skelch of energy 6 versus mOmenNm k of 
Re (1.2: kh is the elecwon mOmenNm corresponding 
to (he minimum sepantion in energy between the 
quasipaRick bands; is the Fermi energy, and k is 
(he quasiparticle momenNm at the Fermi level. 

Figure 2. The m s  enhancement factor as a function 
of temperahxe and evaluated with the parameters V = 
1.8 eV and p J I N  = 0.50. 

We sketch in figure 1 the real parts of (1 and (2 versus the electron momentum k. 
We note that the real parts of the poles of the conduction-electron Green function with 
no applied external fields describe quasiparticle hybridized bands with Recl giving the 
dispersion relation for electrons in the lower band and Re (2 giving the dispersion relation 
for electrons in the upper band. The energy where the hand gap is a minimum is given the 
symbol Eh and its associated momentum is called kh.  

We must determine E ~ ,  which is a function of temperature. Because our energies are 
measured relative to the Fermi level, we have 

One can show that, in the absence of self-energy corrections, EF = V in this model, and 
thus c~ can be obtained by expanding Re 51 in a Taylor series about V: 
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The magnetization is found by using equation (32) and equation (3) in equation (21): 

x cos[e2(t) - m i  . (35) 11 
We differentiate equation (35) with respect to h and take the Fourier transform according 

to equation (24) to find the imaginary part of the transverse susceptibility: 

where 

Im(i-1) = - - [Rz(~)/Udl  sinI&(t) -@(€)I (37) 

and we have used the fact that Im(tl) = -Im(h).  We label the energy corresponding to 
the solution Im(<l) = Im(C2) = 0, by € 8 .  

4. Enhanced mass 

It is well known that the low-temperature behaviour of heavy fermions, at sufficiently 
long wavelengths and low frequencies, can be described by a Fermi liquid with a highly 
enhanced density of states so long as the systems remain normal (Lee er ai 1986). It may 
be of interest, therefore, at this stage in the development of our model, to consider the 
equilibrium properties of the low-temperature state. It has been emphasized by Schweitzer 
and Czycholl (1991) that it is important for any approximation that reproduces the Fermi- 
liquid behaviour within the context of the periodic Anderson model to satisfy Luttinger's 
theorem (Luttinger and Ward 1960, Luttinger 1961). 

Luttinger's theorem requires the self-energy imaginary part to vanish at the Fermi energy 
at zero temperature. As a consequence, the quasiparticle excitations have infinite lifetime on 
the Fermi surface. Away from the Fermi surface at T = 0, however, the quasiparticles have 
finite lifetimes and the self-energy imaginary part attains finite values as the temperature is 
increased from zero. From equation (14) we identify the frequency-dependent self-energy: 

(38) F(k, w )  = P / [ w  - Ej3 - X 3 U ) l .  

The self-energy imaginary part is 
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We approximate equation ( A 3 3  for 0 < o << 1 and 0 < T << 1: 

Using this approximation in equation (39) we find, for low temperature and w very close 
to the Fermi level, that 

(41) ImE(k,o) N - 4 (2z6F)3 (J + S) 
IC(@) = ln(D2/w2) 

P v 2  [OK(W)l2 
where 

and where 2 0  is the width of the conduction band and we have used equation (Al). 
This result is qualitatively similar to the analysis of Schweitzer and Czycholl (1990) 

where they use a self-consistent approach to the second-order perturbation theory of the 
periodic Anderson model and find that the Luttinger theorem is satisfied by Im E(@) - 

The low-temperature Fermi-liquid state is also characterized by a pronounced 
enhancement of the effective mass, and it is interesting to investigate the transition 
from a zero-temperature state with heavy quasiparticles to a non-coherent scattering high- 
temperature regime with no mass enhancement. We specify the enhanced mass in terms of 
the quasiparticle amplitude 2, neglecting for simplicity the k dependence of the self-energy 
(Varma 1985): 

0 2  + (nT)Z. 

- m* = 2-1 1 + aReE'(k,w)I 
m a@ w = I  

(42) 

The enhanced mass in our model, without using the low-temperature approximation, 
becomes 

- = 1 - Vz [ (1 - 7 l W = < )  {[€F + Re Z:r(6.=)I2 - [Im Z S ( ~ F ) ~ ~ )  - ~ [ E F  -t Re c:f(CP)I m 
ma ac:,(w) 

x Im%(€F) aw I w = c j ( [ c ~  + Re E:f(~~)]Z + [Im C:f(+)12!-z 

(43) 
where 

3 W W  
[4 + w2(B)1[4/9 + w2cS)l 

14 + w2Gs)114/9 + w2(B)I 

Eff(€F) = 

;w2(B)[4/9 - W Z ( B ) I  Re C:,(+) = 

w ( ~ ) = - i n ( G )  PV (BD) 
2K6F 

In figure 2 we sketch the enhanced mass as a function of temperature. The enhancement 
factor is reduced from a large value at T = 0 to essentially no enhancement at T = 1 K. 
This indicates a smooth transition from the zero-temperature coherent state to the high- 
temperature scattering state. 
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5. Komnga relaxation processes 

The integrand of equation (36) contains a resonance centred at €8, a few meV from EF. We 
attribute this contribution to the integrand to spin fluctuations of the heavyfermion ground 
state. If one considers the conduction electron as a quasiparticle then, from equation (34), 
the quantity Im(tl)  determines the rate at which spin correlations decay in the interacting 
system. The bare quasiparticle of energy eg becomes renormalized hy dressing itself in a 
self-energy cloud composed of fluctuating valence states and its spectrd density is most 
sharply defined where Im(h) = 0. Thus, the impurity spin probes the renormalized s- 
electron density of states at the characteristic energy ea. 

This resonance is sketched in figure 3. The parameter p is the density of states in the 
band, assumed constant, and N i s  the number of electrons in the system. Each of the three 
curves is evaluated for a different temperature, and the width of each peak corresponds to 
the spin correlation decay rate of fluctuating f states. 

- 
-12r''r- 

- 0.04 meV 
2 

: -  - 
WIZ 

I - 
k- 

- 
'6 r 

Figure 3. Integrand of equation (40) ne% the energy 68 evaluated for three different temp": 
ref is the inverse of the impurity spin comelation time. Curves a. b and c were evaluated with 
temperatures T = 20 K, T = 15 K and T = 10 K respectively. 

Separating out the contribution due to spin fluctuations, we cnite the relaxation rate 
from equation (22) as 

where an approximate value for ea can be determined by expanding Im(F,) about er; and 
setting Im((l) = 0. We find 
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lO0Oi-  101 15001 la1 

100 
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F i y r c  4. The temperature dependence of the Figure 5. The temperature depcndence of the Korringa 
contribution to the Gd ESR linewidth in (a )  CeCuzSiz relaxation process (Gd W R  linewidth) in (a)  CeCuzSi? 
and (b) &AI3 due to impurity spin fluctuations. The and (b) CeA13. Thc full circles are the experimental 
full circles are the experimental data (Schlott et a1 1988) data (SchIott ef a1 1988) and the full curve denotes the 
and the full curve denotes the theoretical curve obtained theoretical c w e  obtained from equation (42) evdluared 
from the second term in equation (42) evaluated with with the parameten ( a )  p J / N  = 0.560. V = 2.40 eV, 
the parameters (a) p J / N  = 0.560, V = 2.40 eV. a = 0.003 and ( b )  p J l N  = 0.537, V = 2.01 eV, 
e = 0.003 and (b) p J l N  = 0.537, V = 2.01 eV. e=0.003. 
o! = 0.003. 

The last term in equation ( 4 3 ,  the f-spin fluctuation term, is plotted as a function of 
temperature in figure 4. This plot is presented with the contribution due to Ce 4f-spin 
fluctuations deduced in the ESR spin relaxation experiments of Schlott et al (1988) on 
CeCuzSiZ and &AI,. 

Equation (45) was evaluated numerically, and in figure 5 we plot the ESR linewidth as 
a function of temperature and compared with the results of Schlott et al (1988). The trend 
in figure 5 indicates that observation of non-linear relaxation behaviour around the Kondo 
temperature in heavy-fermion compounds is highly dependent on the magnitude of the s-f 
interaction strength. We find that, as the parameter p J / N  becomes smaller, decreasing from 
0.60 to 0, the curvature in the Korringa Iate process about the Kondo temperature becomes 
smaller. With p J / N  - 0.50, equation (43,  as plotted against temperature, becomes linear, 
corresponding to the conventional Komnga rate, 

The curves in figure 5 were obtained using J z 0, indicating ferromagnetic coupling. 
Qualitatively similar results can be obtained for J c 0, antiferromagnetic coupling; however, 
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the non-linearities of the relaxation rate around the Kondo temperature are greatly enhanced 
compared to the ferromagnetic case. 

Local moments in heavy-femion systems 

A 

0 

c 

B 
W1‘- w 

Q’= D’+ p $ L  
\ 

4’ 

)&x/+ g+ B*.... ;b’+ \ g 
\ ‘d+ E - + I+.... - =E‘+ \ 

\ r 
\ 

\ r \ 

Figure 6. The s-electron self-energy in terms of the total proper Keldysh vertex p M  I-T and 
the Keldysh vemx y .  The solid lines are bare s-electron propagators and Ihe dotted lines are 
bare f-spin propagators. The Keldysh indices are not shown. 
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Figure 8. The upper diagnm is an abbrevialed form of the s-f interaction at the Keldysh 
vertex, wilh the long form of the interaction (represented by the wavy line) shown immediately 
to its right-hand side. To the right of the long form of the interaction is the mathematical 
representation of the diagram 35 the product of the Keldysh tensor with the D i m  delta-function 
and the interaction strength. The lower diagram is Ole intenction a1 the time-reversed Keldysh 
vertex. 

6.  Conclusion 

In this paper I have sought an expression for the Korringa relaxation processes in a heavy- 
fermion compound. I attempted to derive the spin relaxation rate by using a time-dependent 
approach for evaluating the system Green functions within the context of the Keldysh 
formalism. The derivation was microscopic from first principles using the Hamiltonian 
of Yoshimori and Kasai. The spin relaxation rate was expressed as an integral equation 
containing two terms, a term involving the conventional relaxation processes and a term 
making non-linear contributions associated with rare-earth spin fluctuations. Comparison 
between a plot of equation (45) and the experimental results of Schlott etal (1988) shows 
good agreement. 

The model developed in this paper provides for the non-linearities of the Korringa 
relaxation process arising around the Kondo temperature in heavy-fermion compounds by 
introducing a dependence on the exchange coupling parameter. As the magnitude of J 
decreases in this model, the temperature dependence of the Korringa rate assumes a linear 
behaviour. 

Appendix 

In this appendix the Keldysh retarded self-energy &(O, o) will be evaluated for a single 
impurity located at the origin of coordinates. The interaction Hamiltonian we will use is the 
same as that of the Anderson model for a single magnetic impurity. After performing 
a Coqblin and Schrieffer transformation (Coqblin and Schrieffer 1969), the total time- 
independent Hamiltonian for a single spin impurity is given by 

where N is the number of atoms; J is the s-f coupling constant 

J / 2 N  = V k Z / +  
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ck and E F  are the bare s-f electron energies relative to the Fermi level; cle, Ckar crS, cfD are 
creation and annihilation operators for s. f electrons; and uafa. 2Sp6 are the Pauli matrices 
for s, f electrons. Henceforth we shall drop the [sf) subscript on the self-energy and all 
subscripts on the self-energy and Green functions will indicate elements of a Keldysh 2 x 2 
matrix. 

As Abrikosov points out (Abrikosov 1965), the representation of the spin operator in 
terms of second quantized operators yields for spin other than 1/2, extra 'unphysical states'. 
If, however, we take E F  to be zero (Cheung and Mattuck 1970), then the average number 
o f f  electrons is equal to one, and the only effect of the unphysical states is to introduce a 
normalization factor of 2. We will, therefore, calculate the Keldysh s-f scattering amplitude 
r and the Keldysh self-energy & in terms of the 'exchange' ( J / 2 N ) u .  S interaction 
by setting EF = 0 and assume, in the end, that these calculated quantities are valid for 
E~ attaining a small but finite value. The correspondence between J and the parameters 
of the Anderson Hamiltonian, provided by the Coqblin and Schrieffer transformation, is 
thus assumed to be preserved independently of the details of the self-consistent perturbation 
treatment of the Keldysh self-energy. 

The self-energy is evaluated by performing the sum and integrations represented by 
figure 6. The vertex part can be computed from figure 7, and used to evaluate the self- 
energy in a self-consistent manner. 

The perturbation expansion for the s-f vertex part, in the parquet series, is the sum 
of an electron4ectron r and an electron-hole part y ,  as shown in figure 7 (the roman 
superscripts will denote the Keldysh indices). The diagrams in figure 7 represent integral 
equations, which may be translated into functions by associating with each solid line one 
of three Keldysh s-electron propagators: 

+ 

g y r ,  r'; w)  = lim - 

p ( r ,  r'; 0) dw' 

gF(r, T'; 0) = 2g' 7 (g' - 8") = -i tanh(,¶w/2)p(r, r'; w )  (A4) 

where 

g*(r, T';  w )  = z+if(iw)p(r, r'; w )  (A51 

and where P ( T ,  T ' ;  w )  is the s-electron spectral density, f ( w )  is the Fermi function and 
/3 = I/ksT. In likewise fashion, each dotted line is associated with one of three f-spin 
propagators, 

u(r, r'; w') do' 

fF(r, 7'; w )  = -itanh(pw/Z)u(r, r'; w )  

where u(r ,  7'; w )  is the spectral density of the impurity f spin 
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The Keldysh y diagram is an abbreviated form of the s-f interaction and the Keldysh 
vertex as shown in figure 8. The value (J/2N)(um,, * Spp)yfju is associated with each 
circle, with yi jkr  being a bare Keldysh vertex matrix, and where the Greek subscripts are 
associated with a Pauli matrix spin index. The Keldysh vertex matrix is given by 

yfJkk' 8fj8jkU& ( A 9  

where uz is the third Pauli spin matrix. The vertex is a unit tensor in the i, j indices, 
reflecting that the electron, at the vertex, enters and leaves the same spacetime point. A 
change in [k, k'} will change the sign of the tensor, reflecting that the point at the other 
end of the f-spin propagator can reside on either the upper or the lower branch of the 
Keldysh time contour @"er and Smith 1986). The k-j indices of the unit tensor reflect 
the assumption that we are dealing with a delta-function contact interaction between the 
s conduction electron and the f spin impurity. On performing a transformation (Keldysh 
1965) in the Keldysh space, the Keldysh vertex function is written as 

-11  - -22 Y:: = Y:: = &I. = Ymn - Ym. 
where the tilde indicates a time-reversed impurity spin matrix. 

Let us examine the electron-electron vertex part first. Figure 7 ( B )  yields 
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where a sum is implied over repeated Keldysh indices. 

w' so that it can be factored out of the integral, we write I r  as a column vector: 
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Substituting equation (A16) into equation (A15). noting that 1r is independent of T and 

3 
(Or) = -A('r)  8 N  

where A is a 16 x 16 mattiw. and where the first entry in the r column is rl';'', the second 
entry is rlz:ll, etc. 

Before computing the elements of A, we note that they are sums of terms of the form 

( A 1 9  ///drdr'dmJ(r)gii(r, r'; w ) f i ~ ( r ,  T'; w' - w) 

where the spectral density of the s conduction electron, p ( r ,  T';  w) ,  is assumed to be confined 
to a band of width 20. Evaluating g' with this density we find 

Because q is infinitesimal grJ is infinitesimal. Since gll = 0, only terms involving 
gz = gF = +(T, T')  tanh(,%0/2) are considered when evaluating the elements of A. 

The spectral density of the impurity is a delta-function, and on evaluating the frequency 
integration in equation (A19), we see that the number of terms needed to evaluate each 
element of A is reduced from 16 to two. These terms are 

zl (w')  = \// J ( r ) g u ( r , r ' ; w ) f i ~ ( r , r ' ; w ' - o ) d r d r ' d w  2N 

and 

ZZ(O') = -!-//I J ( T ) g z z ( v .  r'; W ) ~ Z ~ ( T .  T'; w' - 0) d r  dr 'dw.  
2N 

We introduce a local impurity density of states and assume that 

u(r, r'; w )  = U(T',  7'; 0) = u(r'; 0) 

which obey the sum rule 
m 

u(T';w)~T'=u(GJ) = ~ ( u - E F )  = S ( W ) .  
S_m 

Evaluating equation (A22) using equation (Am) and equation (M), we find 

zl(w) = 1 2N ~ ~ / d r d r ' d w J ( r ) g 2 z ( r . r ' ; ~ ) ~ ~ 1 ( ~ , ~ ' ;  w ' - w )  

P J  tanh - --tanh - +i- (';) i; (?) 4 z N  
dw'tanhWw'/2) p J  

4N 
_ _  
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where we  have used the assumption that p ( r ,  T') = p ,  a constant. The remaining term 
needed to evaluate the elements of A is computed in similar fashion, and found to be  

Z Z ( W )  = 2N / / /d rdr 'doJ( r )gZ2(r ,  7'; o)flz(r,  T'; o' - o) 

We now evaluate the elements of A. Substituting equation (AIS) into equation (A19), 
and solving for the column vector IF, we find that 

~ r ~ ~ ~ ~ ~ ( T , ~ )  = I r 21:21 ( T . 0 )  = lrzz(r,o) = (&)qr) 

l f22; I I (+ ,W)= 1i;12:21(T,w) = 1i;11:22 

1 
1 - (J /2N)Z ' (w) l l  + :(J/ZN)Z'(W)I 

X 

l ~ 1 2 : l l  (T,  o) = 1-11:12 r (T,  o) = lfn:?'(~, o) = lrzl:z(r, 0) = o 

i ~ l i ; l l ( T , U )  = I f12; lz ( f ,o )  = l p ; 1 2 ( r , o )  = 1 p ; 2 1  (,-,U) = IFzkn  (r. U )  

= ( J /ZN)S(T) .  (A28) 

The conduction-electron retarded self-energy may be obtained from the vertex part as 
shown in  figure 6. From the figure, we see that the outgoing spin must always be the same 
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as the incoming spin, and hence, following the analysis of Cheung and Mattuck (1970), the 
spin sum for figure 6 is 

= 1J60 //// dr'"''du'du''6(r')(gu(rf, r", u')fiz(r', r"; U" - U') 
2 2N 

= 2 Js(r) / j j j dr'  dr" du' dw"8(rf){g22(r', 7"; U') 
2 2N 
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These integrations are elementary, and we find C': 

This is the self-energy, which we use to evaluate equation (30). 
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